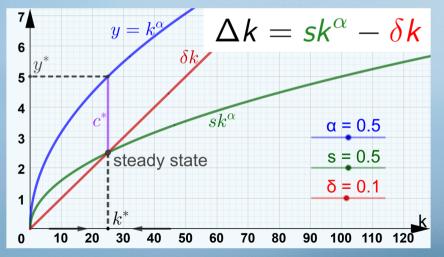
SOLOW MODEL



Production function

$$\operatorname{Inputs} \begin{cases} \operatorname{Capital} K \\ \operatorname{Labor} N \end{cases} \Rightarrow \qquad \operatorname{Output} Y$$

Cobb-Douglas production function

 $Y = F(K, N) = K^{\alpha} N^{1-\alpha} \qquad (\text{with } 0 < \alpha < 1)$

Constant returns to scale

Double **all** inputs \Rightarrow double output

Positive but diminishing returns (marginal products) for both inputs

If we hold **one** input (e.g., labor N) constant and increase the **other input** (e.g., capital)...

- our output increases (positive marginal product)
- the increase of the output diminishes with each additional unit of this input (diminishing marginal product)

How does income per capita evolve over time?

Not the total income Y, but the income per capita y = Y/N explains standard of living!

Definition

Aggregate (absolute) variables use capital letters, while per-capita variables use lower case letters.

$$Y = K^{\alpha}N^{1-\alpha}$$

$$\frac{Y}{N} = \frac{K^{\alpha}N^{1-\alpha}}{N}$$

$$y = K^{\alpha}N^{-\alpha}$$

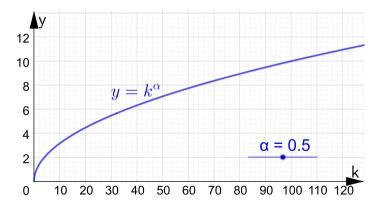
$$y = \frac{K^{\alpha}}{N^{\alpha}}$$

$$y = k^{\alpha}$$

 \Rightarrow income per capita y only depends on capital per capita k!

Production function in intensive form

- $y = f(k) = k^{\alpha}$ is the production function in **intensive form**
- $f(k) = k^{\alpha}$ is increasing in k, f'(k) > 0
- $f(k) = k^{\alpha}$ is **concave**, f''(k) < 0 (becomes "flatter")



Capital accumulation

- **Investments** I_t add to the total capital stock
- Closed economy (and without government, G = 0, T = 0)

investments $I_t =$ savings S_t

- Households save the fixed (exogenous) share s of their income $Y_t \Rightarrow S_t = sY_t$
- Share δ capital K_t gets **destroyed** by \Rightarrow **depreciation** δK_t
- Capital stock in the next period, K_{t+1} , is

$$K_{t+1} = K_t + sY_t - \delta K_t$$
$$K_{t+1} - K_t = sY_t - \delta K_t$$
$$\Delta K = sY - \delta K$$

net investment = gross investment - depreciation

How does capital per capita k evolve over time?

Aggregate capital stock evolves according to

 $\Delta K = sY - \delta K$

We want:

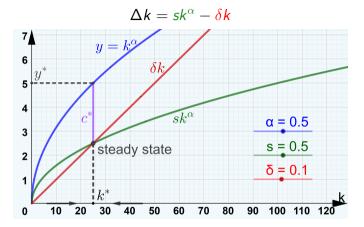
Income **per capita** $y = f(k) = k^{\alpha}!$

$$\frac{\Delta K}{N} = \frac{sY - \delta K}{N}$$
$$\Delta k = sy - \delta k$$

Dynamic evolution of capital per worker in the Solow model

 $\Delta k = sk^{\alpha} - \delta k$

Dynamics and steady state



Steady state

In the steady state (long-run equilibrium) k^* , capital per capita is constant.

In the steady state, investment per capita must be equal to depreciation per capita:

 $sk^{\alpha} = \delta k$

This allows us to calculate the **capital per capita** in the steady state, k^* :

$$s = \delta k^{1-\alpha}$$
$$k^{1-\alpha} = \frac{s}{\delta}$$

Capital per capita in the steady state, k^*

$$k^* = \left(\frac{s}{\delta}\right)^{\frac{1}{1-\alpha}}$$

Income per capita in the steady state, y^*

$$y^* = k^{*\alpha} = \left(\frac{s}{\delta}\right)^{\frac{\alpha}{1-\alpha}}$$

Consumption per capita in the steady state, c^*

$$c^* = (1-s)y^* = (1-s)\left(\frac{s}{\delta}\right)^{\frac{lpha}{1-lpha}}$$

Increase of savings rate from s = 0.5 to s = 0.6

 $\Delta k = sk^{\alpha} - \frac{\delta k}{\delta k}$

